
Intermediate exam T4 

 

Thermodynamics and Statistical 

Physics 2018-2019 
Friday 30-11-2018; 9:00-11:00 

 

Read these instructions carefully before making the exam! 

 

• Write your name and student number on every sheet. 

• Make sure to write readable for other people than yourself. Points will 

NOT be given for answers in illegible writing. 

• Language; your answers have to be in English. 

• Use a separate sheet for each problem (see figure below). 

• Use of a (graphing) calculator is allowed. 

• This exam consists of 3 problems.  

• The weight of the problems is Problem 1 (P1=30 pts); Problem 2 

(P2=30 pts); Problem 3 (P3=30 pts). Weights of the various 

subproblems are indicated at the beginning of each problem.  

• The grade of the exam is calculated as (P1+P2+P3+10)/10. 

• For all problems you have to write down your arguments and the 

intermediate steps in your calculation, else the answer will be 

considered as incomplete and points will be deducted. 

  
PROBLEM 1
Name   S-number

PROBLEM 2
Name   S-number

PROBLEM 3
Name   S-number



  



PROBLEM 1 Score: a+b+c+d+e=7+7+6+5+5=30 

 

 

 

 

 

 

 

 

 

 

Suppose we have a 2D crystal consisting of two types of atoms (A and B) that are arranged 

in rows of alternating type A and type B (see figure above). In total we have 𝑁 × 𝑁 atoms. 

The crystal is in equilibrium with a heat bath with temperature T. The atoms have bonds 

with their neighbours that lead to a quadratic dependence of the potential energy on the 

coordinate that describes the displacement from the equilibrium position in the x-direction. 

For the y-direction this dependence is more complicated due to the bonds between atoms 

of different types but can be described by a sum of power 2 and power 4 terms. This leads 

to the following expressions for the total energy of atoms of type A (𝐸𝐴) and type B (𝐸𝐵), 

𝐸𝐴 =
1

2
𝑀𝐴(𝑣𝑥

2 + 𝑣𝑦
2) + 𝑎0𝑥2 

𝐸𝐵 =
1

2
𝑀𝐵(𝑣𝑥

2 + 𝑣𝑦
2) + 𝑏0𝑦2 + 𝑏1𝑦4 

 

with 𝑀𝐴, 𝑀𝐵 the masses of type A and B atoms, respectively, �⃗� = (𝑣𝑥, 𝑣𝑦) their velocity, 

�⃗� = (𝑥, 𝑦) their position (relative to their equilibrium position), 𝑎0, 𝑏0 and 𝑏1 are positive 

constants describing the strength of the bonds between the atoms. 

 

a) Use the Boltzmann distribution to show that the contribution to the mean energy of an 

atom of mass 𝑀 (either 𝑀𝐴 or 𝑀𝐵) due to its 𝑥-component of the velocity is given by: 

〈
1

2
𝑀𝑣𝑥

2〉 =
1

2
𝑘𝑇. 

b) State the equipartition theorem. 

c) Use the Boltzmann distribution to show that the contribution of the power 4 term to the 

mean energy of an atom of type B is given by:  〈𝑏1𝑦4〉 =
1

4
𝑘𝑇. 

d) Give an expression for the mean total energy 〈𝐸〉 of the crystal. 

e) Give an expression for the heat capacity 𝐶𝑉 of the crystal. 

  

x

y
type A

type B



PROBLEM 2 Score: a+b+c+d+e =7+7+6+6+4=30 

 

 

 

 

 

 

 

 

 

 

 

A diatomic crystal in equilibrium with a heat bath at temperature 𝑇 contains 𝑁 defects that 

are similar but are distinguishable by their location in the crystal. The defects consist of 

atoms of a third type that can be at one of four positions (see figure above). These four 

positions represent four possible states of the defect, 𝑟 = 1, 2, 3, 4. The energies of these 

states are: 𝐸1 = 0, 𝐸2 = 𝐸3 = 𝜀 and  𝐸4 = 2𝜀. 

 

a) Show that the partition function of a single defect is given by: 

 

𝑍1 = (1 + 𝑒−𝛽𝜀)2 

 

b) Give the partition function of the 𝑁 defects.  

c) Calculate the internal energy 𝑈 and the Helmholtz free energy 𝐹 of the N defects. 

d) Calculate the defects contribution to the entropy S of the crystal.  

e) Consider the high temperature limit 𝑇 → ∞. For each state 𝑟 = 1, 2, 3, 4  find the 

probability 𝑝𝑟 in this limit. Use this result to calculate the mean energy of a defect when 

𝑇 → ∞. 

 

 

 

 

 

  

11;  0r E= =

22;  r E = = 33;  r E = =

44;  2r E = =



PROBLEM 3  Score: a+b+c+d+e=7+5+7+5+6=30 

 

Consider a spinless atom with mass 𝑚 is enclosed in a volume V. The atom is in equilibrium 

with a heat bath at temperature 𝑇. 

 

 

 

 

 

 

 

 

a) Show that the single atom partition function 𝑍1 is given by,  

 

𝑍1 = 𝑉 (
2𝜋𝑚𝑘𝑇

ℎ2
)

3
2
 

 

b) Suppose we have a classical ideal gas of N of these atoms enclosed in a volume V. What 

are the assumptions that justify writing the 𝑁-atom partition function as: 

 

𝑍𝑁 =
1

𝑁!
(𝑍1)𝑁 

 

c) Calculate the internal energy 𝑈 for this classical ideal gas of 𝑁 atoms. 

d) Assuming that 𝑁 is a very large number, show that the entropy 𝑆 of this classical ideal 

gas of 𝑁 atoms is given by: 

 

𝑆 = 𝑁𝑘 [
5

2
− ln (

𝑁

𝑉
(

ℎ2

2𝜋𝑚𝑘𝑇
)

3
2

)] 

 

e) Consider a volume 𝑉 that is subdivided by a partition into two equal sized 

compartments. Compartment 1 contains 𝑁 atoms of krypton (mass 𝑚𝐾 and 

compartment 2 contains 𝑀 atoms of xenon (mass 𝑚𝑋). Calculate the difference in 

entropy between this situation and the situation that is established after removal of the 

partition and the atoms have been allowed to completely mix. 

 

 

  

HINT: The density of states for a spinless particle confined to an 

enclosure with volume 𝑉 is (expressed as a function of the particle’s 

momentum p): 

𝑓(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

krypton xenon

 atomsN  atomsM



Solutions 

PROBLEM 1 

 

a) 

For the energy of an atom (either type A or B) we can write: 

 

𝐸 =
1

2
𝑀𝑣𝑥

2 + �́� 

 

Then using the Boltzmann distribution we find, 

 

〈
1

2
𝑀𝑣𝑥

2〉 =
∫

1
2

𝑀𝑣𝑥
2𝑒−𝛽𝐸𝑑𝑥𝑑𝑦𝑑𝑣𝑥𝑑𝑣𝑦

∞

−∞

∫ 𝑒−𝛽𝐸∞

−∞
𝑑𝑥𝑑𝑦𝑑𝑣𝑥𝑑𝑣𝑦

⇒ 

 

〈
1

2
𝑀𝑣𝑥

2〉 =
∫

1
2 𝑀𝑣𝑥

2𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥 ∫ 𝑒−𝛽�́�∞

−∞
𝑑𝑥𝑑𝑦𝑑𝑣𝑦

∞

−∞

∫ 𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥 ∫ 𝑒−𝛽�́�∞

−∞
𝑑𝑥𝑑𝑦𝑑𝑣𝑦

∞

−∞

⇒ 

 

 

〈
1

2
𝑀𝑣𝑥

2〉 =
∫

1
2 𝑀𝑣𝑥

2𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥
∞

−∞

∫ 𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥
∞

−∞

= −
𝜕 ln 𝐼

𝜕𝛽
 

 

Where we have defined 𝐼 = ∫ 𝑒−
1

2
𝛽𝑀𝑣𝑥

2∞

−∞
𝑑𝑣𝑥. Substitute 𝑧2 = 𝛽𝑣𝑥

2 then 𝑧 = √𝛽𝑣𝑥 and 

𝑑𝑣𝑥 =
𝑑𝑧

√𝛽
 and the integral becomes, 

𝐼 =
1

√𝛽
∫ 𝑒−

1
2

𝑀𝑧2

∞

−∞

𝑑𝑧 

And 

 

〈
1

2
𝑀𝑣𝑥

2〉 = −
𝜕 ln 𝐼

𝜕𝛽
= −

𝜕

𝜕𝛽
[ln

1

√𝛽
+ ln { ∫ 𝑒−

1
2

𝑀𝑧2

∞

−∞

𝑑𝑧}] = − [√𝛽 (−
1

2

1

𝛽
3
2

) + 0] ⇒ 

 

〈
1

2
𝑀𝑣𝑥

2〉 =
1

2𝛽
=

1

2
𝑘𝑇 

b) 

For a classical system in equilibrium with a heat bath at temperature 𝑇 every term in the 

Hamiltonian (energy) that is quadratic in one of the systems (independent) coordinates will 

contribute 
1

2
𝑘𝑇 to the mean energy of the system. 

 



c) 

Idem as under a) we arrive at: 

 

〈𝑏1𝑦4〉 =
∫ 𝑏1𝑦4𝑒−𝛽𝑏1𝑦4

𝑑𝑦
∞

−∞

∫ 𝑒−𝛽𝑏1𝑦4
𝑑𝑦

∞

−∞

= −
𝜕 ln 𝐼

𝜕𝛽
 

With  

𝐼 = ∫ 𝑒−𝛽𝑏1𝑦4
𝑑𝑦

∞

−∞

 

 

WELL, that was how I planned the exercise. However, I forgot about the 𝑦2 term that 

should have been omitted from the expression for the total energy of atoms of type B. Since 

it is in there, we have  

 

〈𝑏1𝑦4〉 =
∫ 𝑏1𝑦4𝑒−𝛽(𝑏0𝑦2+𝑏1𝑦4)𝑑𝑦

∞

−∞

∫ 𝑒−𝛽(𝑏0𝑦2+𝑏1𝑦4)𝑑𝑦
∞

−∞

 

 

This integral can not be solved easily and does not lead to a 1/4 𝑘𝑇 term.  

 

What we decided for the grading. If you did not see the problem with the 𝑦2 term and just 

made the same mistake as I did, you get all the points. If you correctly wrote the expression 

above but ran in to trouble, you get all the points. If you mentioned the problem and stated 

something like that the problem was wrong and that this does not lead to a 1/4 𝑘𝑇 term, 

you get 2 bonus points. 

 

Here, the solution proceeds but with the assumption that 𝑏0 = 0. 

 

Idem, but now with substitution 𝑧4 = 𝛽𝑦4 then 𝑧 = 𝛽
1

4𝑦 and 𝑑𝑦 =
𝑑𝑧

𝛽
1
4

 and the integral 

becomes 

𝐼 =
1

𝛽
1
4

∫ 𝑒−𝑏1𝑧4

∞

−∞

𝑑𝑧 

And 

 

〈𝐸〉 = −
𝜕 ln 𝐼

𝜕𝛽
= −

𝜕

𝜕𝛽
[ln

1

𝛽
1
4

+ ln { ∫ 𝑒−𝑏1𝑧4

∞

−∞

𝑑𝑧}] = − [𝛽
1
4 (−

1

4

1

𝛽
5
4

) + 0] ⇒ 

 

〈𝐸〉 =
1

4𝛽
=

1

4
𝑘𝑇 

d)  

For a single atom of type A we have, 



 

〈𝐸𝐴〉 = 〈
1

2
𝑀𝐴(𝑣𝑥

2 + 𝑣𝑦
2) + 𝑎0𝑥2〉 = 3 ×

1

2
𝑘𝑇 =

3

2
𝑘𝑇 

 

For a single atom of type B we have, 

 

〈𝐸𝐵〉 = 〈
1

2
𝑀𝐵(𝑣𝑥

2 + 𝑣𝑦
2) + 𝑏0𝑦2 + 𝑏1𝑦4〉 = 3 ×

1

2
𝑘𝑇 + 1 ×

1

4
𝑘𝑇 =

7

4
𝑘𝑇 

  

The crystal consists of 
1

2
𝑁2 type A atoms and 

1

2
𝑁2 type B atoms, so we find 

 

〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉 =  
1

2
𝑁2 ×

3

2
𝑘𝑇 +

1

2
𝑁2 ×

7

4
𝑘𝑇 =

13𝑁2

8
𝑘𝑇 

 

Where we used the results a) and c) and used equipartition of energy,  

 

e) 𝐶𝑉 =
𝜕〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉

𝜕𝑇
=

13𝑁2

8
𝑘 

The answers to problem 1a and 1c can also be obtained by using the integrals on the 

formula sheet. 

 

〈
1

2
𝑀𝑣𝑥

2〉 =
∫

1
2 𝑀𝑣𝑥

2𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥
∞

−∞

∫ 𝑒−
1
2

𝛽𝑀𝑣𝑥
2

𝑑𝑣𝑥
∞

−∞

=
1

2
𝑀

(
1
2 √

𝜋
𝑐3)

(√
𝜋
𝑐

)

=
1

4
𝑀

1

𝑐
=

1

4
𝑀

1

1
2

𝛽𝑀
=

1

2
𝑘𝑇 

 

〈𝑏1𝑦4〉 =
∫ 𝑏1𝑦4𝑒−𝛽𝑏1𝑦4

𝑑𝑦
∞

−∞

∫ 𝑒−𝛽𝑏1𝑦4
𝑑𝑦

∞

−∞

= 𝑏1

(
1
2

Γ (
5
4)

𝑐
5
4

)

(
2Γ (

5
4)

𝑐
1
4

)

=
1

4
𝑏1

1

𝑐
=

1

4
𝑏1

1

𝛽𝑏1
=

1

4
𝑘𝑇 

  



PROBLEM 2 

 

a) Partition function of a single defect is: 

 

𝑍1 = ∑ 𝑒−𝛽𝐸𝑟

4

𝑟=0

= 𝑒−𝛽×0 + 𝑒−𝛽×𝜀 + 𝑒−𝛽×𝜀 + 𝑒−𝛽×2𝜀 = 1 + 2𝑒−𝛽𝜀 + (𝑒−𝛽𝜀)
2

⇒ 

𝑍1 = (1 + 𝑒−𝛽𝜀)2 

 

b) 

Because the defects are distinguishable we have, 

 

𝑍𝑁 = 𝑍1
𝑁 = (1 + 𝑒−𝛽𝜀)2𝑁 

c) 

The internal energy of the defects is given by, 

 

𝑈 = 〈𝐸〉 = −
𝜕 ln 𝑍𝑁

𝜕𝛽
= −

𝜕

𝜕𝛽
[(ln(1 + 𝑒−𝛽𝜀)2𝑁)] = −2𝑁

𝜕

𝜕𝛽
[ln(1 + 𝑒−𝛽𝜀)]

=
⇒ 

 

𝑈 =
−2𝑁

1 + 𝑒−𝛽𝜀
(−𝜀𝑒−𝛽𝜀) =

2𝑁𝜀𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
 

 

The Helmholtz free energy is 𝐹 = −𝑘𝑇 ln 𝑍𝑁 . 

 

𝐹 = −𝑘𝑇 ln 𝑍𝑁 = −𝑘𝑇[ln(1 + 𝑒−𝛽𝜀)2𝑁] = −2𝑁𝑘𝑇 ln(1 + 𝑒−𝛽𝜀). 

 

d) 

Use the definition of 𝐹 namely, 𝐹 = 𝑈 − 𝑇𝑆 to find S: 

 

𝑆 =
𝑈 − 𝐹

𝑇
=

1

𝑇
(

2𝑁𝜀𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
) + 2𝑁𝑘 ln(1 + 𝑒−𝛽𝜀) 

 

𝑆 = 2𝑁𝑘 [(
𝜀𝛽𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
) + ln(1 + 𝑒−𝛽𝜀)] 

e)  

In case 𝑇 → ∞ we have for 𝑟 = 1, 2, 3, 4., 

 

𝑝𝑟 =
𝑒−𝛽𝐸𝑟

𝑍1
≈

1

𝑍1
 

and 



𝑍1 = (1 + 𝑒−𝛽𝜀)2 ≈ (1 + 1)2 = 4 

Thus, 𝑝𝑟 =
1

4
 and  

 

〈𝜀〉 = ∑ 𝑝𝑟𝐸𝑟

4

𝑟=0

=
1

4
(0 + 𝜀 + 𝜀 + 2𝜀) = 𝜀 

  



PROBLEM 3 

a)  

Single atom partition function: 

 

𝑍1 = ∫ 𝑓(𝑝)𝑒−𝛽
𝑝2

2𝑚𝑑𝑝 =

∞

0

∫
𝑉

ℎ3
4𝜋𝑝2𝑒−𝛽

𝑝2

2𝑚𝑑𝑝

∞

0

=
4𝜋𝑉

ℎ3
∫ 𝑝2𝑒−𝛽

𝑝2

2𝑚

∞

0

𝑑𝑝 

 

Use the substitution 𝑥2 = 𝛽
𝑝2

2𝑚
 and thus 𝑝 = √

2𝑚

𝛽
𝑥 and 𝑑𝑝 = √

2𝑚

𝛽
𝑑𝑥 to find 

 

𝑍1 =
4𝜋𝑉

ℎ3
(

2𝑚

𝛽
)

3
2

∫ 𝑥2𝑒−𝑥2
𝑑𝑥 =

∞

0

4𝜋𝑉

ℎ3
(

2𝑚

𝛽
)

3
2 √𝜋

4
= 𝑉 (

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2
 

The integral was solved using the formula sheet. 

 

b) 

The particles are indistinguishable (2 pts) and situations that have two or more particles 

occupying the same energy level do not occur (3 pts).  

 

c) 

Use the 𝑁-atom partition function: 

 

𝑍𝑁 =
1

𝑁!
(𝑍1)𝑁 =

1

𝑁!
(𝑉 (

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2

)

𝑁

=
𝑉𝑁

𝑁!
(

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2

𝑁

=
𝑉𝑁

𝑁!
(

2𝜋𝑚

𝛽ℎ2
)

3
2

𝑁

 

to find  

𝑈 = −
𝜕 ln 𝑍𝑁

𝜕𝛽
= −

𝜕

𝜕𝛽
(ln [

𝑉𝑁

𝑁!
(

2𝜋𝑚

ℎ2
)

3
2

𝑁

] + ln 𝛽−
3
2

𝑁) =
3

2
𝑁

𝜕

𝜕𝛽
(ln 𝛽) =

3

2

𝑁

𝛽
=

3

2
𝑁𝑘𝑇 

 

d) 

We first write: 

ln 𝑍𝑁 = ln [
𝑉𝑁

𝑁!
(

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2

𝑁

] = 𝑁 ln 𝑉 − ln 𝑁! +
3

2
𝑁 ln

2𝜋𝑚𝑘𝑇

ℎ2
 

Then use Stirling’s approximation ln 𝑁! ≈ 𝑁 ln 𝑁 − 𝑁 to find 

 



ln 𝑍𝑁 ≈ 𝑁 ln 𝑉 − Nln 𝑁 + 𝑁 +
3

2
𝑁 ln

2𝜋𝑚𝑘𝑇

ℎ2
= 𝑁 [1 − ln (

𝑁

𝑉
(

ℎ2

2𝜋𝑚𝑘𝑇
)

3
2

)] 

And  

 

 

𝐹 = −𝑘𝑇 ln 𝑍𝑁 = −𝑁𝑘𝑇 [1 − ln (
𝑁

𝑉
(

ℎ2

2𝜋𝑚𝑘𝑇
)

3
2

)] 

We calculate 𝑆 using: 

 

𝑆 =
𝑈 − 𝐹

𝑇
=

3
2

𝑁𝑘𝑇 + 𝑁𝑘𝑇 [1 − ln (
𝑁
𝑉

(
ℎ2

2𝜋𝑚𝑘𝑇
)

3
2

)]

𝑇
= 𝑁𝑘 [

5

2
− ln (

𝑁

𝑉
(

ℎ2

2𝜋𝑚𝑘𝑇
)

3
2

)] 

e) 

∆𝑆 = 𝑆𝑎𝑓𝑡𝑒𝑟 − 𝑆𝑏𝑒𝑓𝑜𝑟𝑒 

 

𝑆𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑁𝑘 [
5

2
− ln (

𝑁

(
1
2 𝑉)

(
ℎ2

2𝜋𝑚𝐾𝑘𝑇
)

3
2

)] + 𝑀𝑘 [
5

2
− ln (

𝑀

(
1
2 𝑉)

(
ℎ2

2𝜋𝑚𝑋𝑘𝑇
)

3
2

)] 

 

𝑆𝑎𝑓𝑡𝑒𝑟 = 𝑁𝑘 [
5

2
− ln (

𝑁

𝑉
(

ℎ2

2𝜋𝑚𝐾𝑘𝑇
)

3
2

)] + 𝑀𝑘 [
5

2
− ln (

𝑀

𝑉
(

ℎ2

2𝜋𝑚𝑋𝑘𝑇
)

3
2

)] 

 

 

∆𝑆 = −𝑁𝑘 ln
𝑁

𝑉
− 𝑀𝑘 ln

𝑀

𝑉
+ 𝑁𝑘 ln

2𝑁

𝑉
+ 𝑀𝑘 ln

2𝑀

𝑉
= (𝑁 + 𝑀)𝑘 ln 2 

 


